我爱自然语言处理

时间:2019-10-25 06:59来源:未知 作者:admin 点击:
2001年7期开奖结果是什么生肖 。 马会财经图库 我用过不少深度学习服务器,也包括一些GPU云服务器,相对来说,GPU云服务器是比较贵的。最近深脑链的同学让我试用了通过DBC Token结算的GPU云服务器,感觉相当的便宜和好用,所以尝试推荐大家试用,我们和深脑

  2001年7期开奖结果是什么生肖马会财经图库我用过不少深度学习服务器,也包括一些GPU云服务器,相对来说,GPU云服务器是比较贵的。最近深脑链的同学让我试用了通过DBC Token结算的GPU云服务器,感觉相当的便宜和好用,所以尝试推荐大家试用,我们和深脑链达成合作,建立了AINLP-DBC GPU云服务器租用平台

  需要提前说明的时候,基于深脑链技术提供的GPU服务平台是采用数字货币DBC Token结算的,对于这块儿我之前是比较犹豫的,不希望大家通过这个涉及“炒币”,只是希望大家可以通过一种比较便宜好用的方式尝试使用GPU云服务器。在完整的体验了整个使用流程之后,我觉得是可用推荐给大家使用的,特别是学习深度学习,又没有GPU机器的同学,或者打比赛的时候有临时GPU需求的同学。欢迎感兴趣的同学加入我们的种子用户交流群(群二维码见文末,或者添加微信id:AINLP2,注明GPU,邀请入群),深脑链的同学会给每位新用户提供2400DBC,约可以使用48小时的GPU云服务器,对于使用过程中的任何问题,深脑链的同学都会在群里进行及时的解答。

  推荐一下AINLP技术交流群里 zYx.tom 同学贡献给大家的两份NLP读书笔记和一份中文注释代码,包括:

  由作者授权,我把2份pdf文件放到github上了,感兴趣的同学可以直接在github上下载:

  《自然语言处理综论》是NLP领域的经典著作,第一版、第二版国内都有中文翻译版,目前英文版第三版《Speech and Language Processing (3rd ed. draft)》正在撰写中,已完结的章节草稿可以直接从slp3官网下载:,加了很多深度学习自然语言处理的相关章节,这里引用李纪为博士《初入NLP领域的一些小建议》中的一段描述,供计划学习这本书的同学参考:

  了解NLP的最基本知识:Jurafsky和Martin的Speech and Language Processing是领域内的经典教材,里面包含了NLP的基础知识、语言学扫盲知识、基本任务以及解决思路。阅读此书会接触到很多NLP的最基本任务和知识,比如tagging, 各种parsing,coreference, semantic role labeling等等等等。这对于全局地了解NLP领域有着极其重要的意义。书里面的知识并不需要烂熟于心,但是刷上一两遍,起码对于NLP任务有基本认识,下次遇到了知道去哪里找还是非常有意义的。

  《计算机自然语言处理》是哈工大王晓龙、关毅两位老师的中文NLP著作,我在刚入门NLP的时候读过,但是已经很久了,这本书在我早期的博文里记述过:《几本自然语言处理入门书》,唯一的印象就是第一次了解到本科母校HIT在中文NLP领域是非常厉害的。这本书貌似已经无法在电商网站买到,感兴趣的同学可以看看zYx.Tom同学的学习笔记。

  最后,欢迎大家关注AINLP公众号,加入AINLP技术交流群,一起维护一个NLP技术交流环境。

  Clause 是帮助中小型企业快速而低成本的获得好用的语义理解服务的系统。

  Clause 是 Chatopera 团队自主研发及使用其他商业友好的开源软件的方式实现的,Clause 为实现企业聊天机器人提供强大的大脑,包括客服、智能问答和自动流程服务。Clause 利用深度学习,自然语言处理和搜索引擎技术,让机器更加理解人。

  认真推荐一份深度学习笔记:dl-notes,作者是我的师兄朱鉴,很多年前,他也给过我一份《无约束最优化》的笔记,在这里发布过。这份文件虽然被他命名为:一份简短的深度学习笔记,但是我读完后的第一反应是:简约而不简单。师兄在工作上一直是我的偶像,他在腾讯深耕自然语言处理相关方向6年,之后又一直在小米打拼,作为技术专家,现在主要负责对话系统相关的工作。他在工作上兢兢业业,但是工作之余也一直在学习,前两天他把这份笔记给我,说这是工作之余学习的一个总结,希望分享给大家。这份深度学习笔记共有150多页,从基础的微积分、线性代数、概率论讲起,再到数值计算、神经网络、计算图、反向传播、激活函数、参数优化、损失函数、正则化等概念,最后落笔于网络架构,包含前向网络、卷积网络、递归网络以及Transformer和Bert等,涵盖的内容非常系统全面。强烈推荐给大家,个人觉得这是一份极好的深度学习中文材料,可用于深度学习入门或者平时工作参考,当然也可以基于这份笔记的任何一个章节做深度扩展阅读和学习。

  最近对Rasa产生了浓厚的兴趣,准备用Rasa打磨一下聊天机器人,所以做了一些调研和学习,准备记录一下,这是第一篇,感兴趣的同学可以参考。

  Rasa是一套开源机器学习框架,用于构建基于上下文的AI小助手和聊天机器人。Rasa有两个主要模块:Rasa NLU 用于对用户消息内容的语义理解;Rasa Core 用于对话管理(Dialogue management)。Rasa官方还提供了一套交互工具 RasaX 帮助用户提升和部署由Rasa框架构建的AI小助手和聊天机器人。

  学习一套东西最好的方法是从官方文档开始,Rasa官方文档相当贴心,我们从Rasa User Guide走起。

  如果一切正常,rasa 及 rasa x 将同时被安装,如果你不希望使用 RasaX,那么安装时直接pip install rasa即可,当然还可以继续安装 Rasa NLU 文本分析时所需的一些依赖,此处暂时忽略。

  Rasa 官方tutorial示例相当贴心,即使你没有安装rasa,也可以在这个页面通过浏览器运行示例代码,如果已经安装了,可以在自己的电脑上通过命令行follow整个流程。

  如果不加 --no-prompt,会有几个问题提示。你也可以直接通过浏览器在官方页面执行“run”按钮,结果是这样的:

  深度学习环境部署的方法有很多种,其中Docker化深度学习环境和项目是一个很不错的选择。这里写过一些深度学习主机安装和部署的文章,这篇文章记录一下相关的通过Docker来部署和测试深度学习项目的一些经验,以下是在一台4卡1080TI,Ubutu16.04的机器上的记录。

  关于Docker的相关介绍资料比较多,这里就不多说了,感兴趣的同学可以自行Google或者看一下参考资料。

  单独安装Docker之后还无法使用带GPU的深度学习机器,需要再安装一下英伟达出品的Nvidia-docker。

  强烈推荐一个项目:Chinese NLP ,这是由滴滴人工智能实验室所属的自然语言处理团队创建并维护的,该项目非常细致的整理了中文自然语言处理相关任务、数据集及当前最佳结果,相当完备。

  每个子任务下面,会详细介绍相关的任务背景、示例、评价指标、相关数据集及当前最佳结果。以中文分词为例,除了我们熟悉的backoff2005数据集外,还有一些其他数据来源:

  直接评估(人工评判)。Amazon Mechnical Turk上的标注人员会看到一个系统生成的翻译和一个人工翻译,然后回答这样一个问题:“系统翻译有多么精确的表达了人工翻译的含义?”

  brevity penalty: 一个系数,用来惩罚长度短于参考翻译的机器翻译结果。

  标准的Bleu计算流程会先对参考译文和机器翻译结果进行符号化 (tokenizition)。

  机器翻译相关语料资源方面,也包括我们比较熟悉的联合国语料库和AI Challenger:

  其他相关任务感兴趣的同学可以自行参考,这是一个相当不错的了解当前中文NLP相关任务的参考点,感谢建设和维护该项目的同学。

  前段时间给公众号新增了一个成语接龙功能:AINLP公众号对话接口新增成语接龙,这个里面提到的项目用到了一份成语数据,包含了2万多条成语数据和释义。不过这个数据之外,推荐一个更棒的Github项目:

  这个项目收录了收录了 14032 条歇后语,16142 个汉字,264434 个词语,31648 个成语,并且以json格式提供了相关数据,非常方便:

  我把这份数据放到了Elasticsearch里,并且通过ES的Python接口elasticsearch-py提供后端检索服务,现在可以通过AINLP公众号对话接口检索了,感兴趣的同学可以一试,包括:

  感兴趣的同学可以关注AINLP公众号,直接公众号对话测试,更多功能可以参考:

  成语接龙很有意思,原本计划找一些成语语料自己做一个,不过Google一圈后发现Github上有一个现成的项目:IdiomsSolitaire

  所以很快把这个接口接入了AINLP的对话功能中,感兴趣的同学可以关注AINLP公众号直接测试:

  最后,欢迎关注我们的公众号AINLP,可以对对联,自动作诗,查询相似词,玩词语加减游戏等:

  我们的公众号AINLP,致力于做一个有趣有AI的NLP公众号,作者是我爱自然语言处理博客博主,NLPJob、课程图谱网站保姆,曾在腾讯从事文本挖掘相关工作。AINLP 关注自然语言处理、机器学习、深度学习相关技术,关注人工智能、文本挖掘相关算法研发职位,关注MOOC相关课程和公开课。公众号直接对话双语聊天机器人、调戏夸夸机器人、尝试自动对联、作诗机,使用中英机器翻译,查询相似词,计算相似度,玩词语加减游戏,测试NLP相关工具包,欢迎来聊,欢迎关注。

  如何学习自然语言处理:NLP领域经典《自然语言处理综论》英文版第三版更新

  CS224N 2019最全20视频分享:斯坦福大学深度学习自然语言处理课程资源索引

  放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较

  从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史

  AINLP聊天机器人除了日常搭讪外,还负责回复用户的日常查询,所以为一些关注度比较高的文章和NLP资源做了关键字和索引,分散在以前的一些文章介绍里,这里再统一贴出来:

  1、关注AINLP公众号,后台回复 “文章、历史消息、历史、history、存档” 任一关键字获取历史文章存档消息。

  2、回复“正态分布,rickjin, 正态分布前世今生, 正态分布文章, 正太分布, 正太, 正态”任一关键字获取Rickjin正态分布前世今生系列:

  3、回复“nlp, 自然语言处理,学习自然语言处理,学习nlp, 如何学习nlp,如何学习自然语言处理” 任一关键字获取文章:如何学习自然语言处理

  5、回复slp3 获取:自然语言处理综论英文版第三版及斯坦福NLP课程链接和密码

  Geoffrey Hinton 大神面向机器学习的神经网络公开课及相关视频资料

  斯坦福大学深度学习自然语言处理课程CS224N 2019 全20个视频分享

  17、回复”tongjixuexi”获取:李航老师统计学习方法第一版PPT(清华大学深圳研究生院袁春老师精心制作)

(责任编辑:admin)
相关内容:
一文带你读懂自然语言处理 - 自然语言处理-人工智能实验室 自然语言处理到底在“处理”些 自然语言理解 OSCHINA
平特一肖大公开| 马会开开奖结果| 温州财神爷心水玄机图| 香港码博士| 白小姐免费玄机资料| 新版跑狗图每期更新新| 旺角图库旺角心水论坛| 香港马会资料今期挂牌| 香港一肖一码期| 小鱼儿主论坛|